Also See:
NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA

Shuttles

Space Shuttle Columbia disaster
Space Shuttle Columbia disaster Crew of STS-107 on launch day () STS-107 was a space shuttle mission by NASA using the Space Shuttle Columbia. The entire seven member crew was killed on February 1, 2003, when the shuttle disintegrated over Texas during reentry into the Earth's atmosphere.This was the second total loss of a Space Shuttle, the first being Challenger. Table of contents showTocToggle("show","hide") 1 Timeline 2 Effect on US space program 3 Investigation 3.1 The Columbia Accident Investigation Board 4 Shuttle Crew of Flight STS-107 5 External Links Timeline At about 05:54 PST (08:54 EST), a California news photographer observed pieces breaking away from Columbia as it passed overhead, as well as a red flare coming from the shuttle itself. At about 09:00 EST (14:00 NASA's Space Shuttle program is an ongoing endeavor, started in the late 1960s, that has created the world's first partially reusable space launch system, and the first spacecraft capable of carrying large satellites both to and from low Earth orbit. Each shuttle is designed for a projected lifespan of 100 launches. The original purpose of the program was to ferry supplies to a space station. In reality, the Shuttle is the United States' sole manned launch vehicle and has totally dominated NASA's operations since the mid 1970s. With the construction of the International Space Station the Shuttle has finally begun to be used for its original purpose. In January 2004, it was announced that the Shuttle fleet would be replaced by 2010.

Table of contents
1 Components
Statistics
3

Worse, any increase in the weight of the upper portion of a lauch vehicle, which had just occurred, requires an even bigger increase in the capability of the lower stage used to launch it. Suddenly the two-stage system grew in size to something larger than the Saturn V, and the complexity and costs to develop it skyrocketed.

Discover NASA

Kalpana Chawla
(July 1, 1961 - February 1, 2003) was an astronaut and space shuttle mission specialist of STS-107 (Columbia) who was killed when the craft disintegrated after reentry into the Earth's atmosphere. Kalpana Chawla Table of contents showTocToggle("show","hide") 1 Early Life 2 Education 3 NASA Career 4 Personal Characteristics 5 Memoria 6 See also 7 External Links Early Life Chawla was born in Karnal, Haryana, India. Her interest in flight was inspired by J. R. D. Tata, India's first pilot. Education Chawla studied aeronautical engineering at the Punjab Engineering College in Punjab, India in 1982 where she earned her Bachelor of Science degree. Thereafter she moved to the United States to obtain a Master of Science degree in aerospace engineering from University of Texas (1984). Dr. Chawla earned a doctorate in aerospace

Ulysses (spacecraft)
for the Latin translation of Odysseus) was launched in October 1990 from the Space Shuttle Discovery (mission STS-41) as a joint venture of NASA and the European Space Agency. The spacecraft first flew to Jupiter for a swing-by maneuver which brought it out of the ecliptic plane, in order to investigate the polar regions of the sun. It did explore both the northern and southern solar pole, which gave many unexpected result. Especially the southern magnetic pole was found to be much more dynamical and without any fixed clear magnetic pole. The short version "The sun has no magnetic south pole" is misleading, as the sun is not a magnetic monopole. Ulysses' mission is extended until at least 2004.

The Shuttle in retrospect

Whilst the shuttle has been a reasonably successful launch vehicle, it had been unable to meet its goals of radically reducing flight launch costs, as each flight costs on the order of $500 million rather than initial projections of $10 to $20 million.

Although the design is radically different than the original concept, the project was still supposed to meet the upgraded AF goals as well as be much cheaper to fly in general. What went wrong?

One issue appears to be inflation. During the 1970s the US suffered from the worst inflation in modern history, driving up costs about 200% by 1980. In contrast, the rate between 1990 and 2000 was only 34% in total. This has the effect of magnifying the development costs of the shuttle tremendously.

However this doesn't explain the high costs of the continued operations of the shuttle. Even accounting for inflation the launch costs on the original estimates should be about $100 million today. To explain this you have to look at the operational details of maintaining and servicing the shuttle fleet, which have turned out to be tremendously more expensive than anticipated.

When originally conceived the shuttle was to operate similar to an airliner. After landing the Orbiter would be checked out and start "mating" to the rest of the system (the ET and SRBs) and be ready for launch in as little as two weeks. Instead this turnaround process in fact takes months. This is due, in turn, to the continued "upgrading" of the inspection process as a result of hardware decisions made to reduce short-term development costs which resulted in higher maintenance requirements which where exacerbated by the fallout from the loss of Challenger. Even simple tasks now require unbelievable amounts of paperwork. This paperwork results from the fact that, unlike current expendable launch vehicles, the Space Shuttle is manned and has no escape systems to speak of and therefore any accident which would result in the loss of booster would also result in the loss of the crew which is, of course, unacceptable. Because loss of crew is unacceptable, the primary focus of the shuttle program is to return the crew to earth safely, which can conflict with other goals, namely to launch satellites cheaply. Furthermore, because there are cases where there are no abort modes, no potential way to prevent failure from becoming critical, many pieces of hardware simply must function perfectly and so must be carefully inspected before each flight.

The result is a massively inflated manpower bill. There are 25,000 workers in shuttle operations (perhaps an older number), so simply multiply any figure that you choose for an average annual salary, divide by six (or 4 or 7...launches per year), and there you have it.

The lessons of the shuttle have been seen as different depending on who you ask. In general, however, future designers look to systems with only one stage, automated checkout, and in some cases, overdesigned (more durable) low-tech systems.

Perhaps the most annoying aspect of the shuttle system is to consider the Air Force participation. While the blame rests solely at the feet of NASA for getting them involved in the first place, it was the Air Force requirements that drove the system to be as complex and expensive as it is today. Ironically neither NASA nor the Air Force got the system they wanted or needed, and the Air Force eventually threw in the towel and returned to their older launch systems and abandoned their Vandenburg shuttle launch plans. The capabilities which most seriously hobbled the Shuttle system, namely the 65,000 payload, large payload bay, and 1000 mile cross-range, have in fact, except for the payload bay, never been used.

With a baseline project now gelling, NASA started to work though the process of obtaining stable funding for the five years the project would take to develop. Here too they found themselves increasingly backed into a corner.